Solution to Exercise 10

1.
$$(a)$$

 f^*

$$f^*(d) = \sup_{x \in \mathbb{R}^N} (\langle d, x \rangle - f(x)) = \sup_{x \in \mathbb{R}^N} \sum_{i=1}^N (d_i x_i + \log x_i) = \sum_{i=1}^N \sup_x \in \mathbb{R} (d_i x_i + \log x_i)$$

If $d_i \geq 0$, $\sup_{x\in\mathbb{R}} (d_i x + \log x) = +\infty$. Fix $d_i < 0$. Let $g(x) = d_i x + \log x$. Since $g'(x) = d_i + \frac{1}{x}$ and $g''(x) = -\frac{1}{x^2} < 0$. When g'(x) = 0, $x = -\frac{1}{d_i}$. Therefore, g(x) is attains supremum at $x = -\frac{1}{d_i}$. Moreover, $g\left(-\frac{1}{d_i}\right) = -1 - \log\left(-d_i\right)$. Hence,

$$f^{*}(d) = \begin{cases} -n - \sum_{\substack{i=1 \\ +\infty,}}^{N} (\log (-d_{i})), & d_{i} < 0 \text{ for each } i = 1, 2, \dots, N \\ \text{otherwise} \end{cases}$$

(b)
$$^{*}(d) = \sup_{x \in \mathbb{R}^{N}} \left(d^{T}x - \left(x^{T}Ax + b^{T}x + c \right) \right) = -c - \inf_{x \in \mathbb{R}^{N}} \left(x^{T}Ax + (b - d)^{T}x \right).$$

Let $g(x) = x^T A x + (b-d)^T x$. Since $\nabla g(x) = 2Ax + (b-d)$ and $\nabla^2 g(x) = 2A \ge 0$. When $\nabla g(x) = 0, 2Ax = d-b$. Therefore, when $d-b \in \text{im}(A)$, $x = \frac{1}{2}A^{-1}(d-b)$ minimizes g(x), and the minimizer does not exist otherwise. When the minimizer of g(x) exists, $g\left(\frac{1}{2}A^{-1}(d-b)\right) = -\frac{1}{4}(d-b)^T A^{-1}(d-b)$. Then.

$$f^*(d) = \begin{cases} \frac{1}{4}(d-b)^T A^{-1}(d-b) - c, & \text{when } d-b \in \text{im}(A) \\ +\infty & \text{otherwise} \end{cases}$$

(c) Recall the definition of dual norm

$$\|y\|_* = \sup_{\|x\| \le 1} x^T y.$$

To evaluate $f^*(y) = \sup_x (y^T x - ||x||)$ we distinguish two cases. If $||y||_+ \leq 1$, then (by definition of dual norm)

$$y^T x \leq ||x||$$
 for all x

and equality holds if x = 0; therefore $\sup_x (y^T x - ||x||) = 0$.

If $||y||_* > 1$, there exists an x with $||x|| \le 1, x^T y > 1$; then

$$f^*(y) \ge y^T(tx) - ||tx|| = t(y^Tx - ||x||)$$

and right-hand side goes to infinity if $t \to \infty$

Hence,

$$f^*(y) = \begin{cases} 0 & \|y\|_* \le 1\\ +\infty & \|y\|_* > 1 \end{cases}$$

2. Assuming $x^* > 0$ is a solution such that $\sum_i (x_i^*)^p = 1$, the KKT stationarity condition reads

$$\nabla_x \left\{ \sum_i \frac{a_i}{x_i} + \lambda \left(\sum_i x_i^p - 1 \right) \right\} = 0 \Leftrightarrow \frac{a_i}{x_i^2} = p\lambda x_i^{p-1}$$

whence $x_i = [a_i/(p\lambda)]^{1/(p+1)}$. Since $\sum_i x_i^p$ should be 1, we get

$$x_i^* = \frac{a_i^{1/(p+1)}}{\left(\sum_j a_j^{p/(p+1)}\right)^{1/p}}.$$

This x^* is optimal because the problem is convex and the KKT conditions are satisfied at this point.

3.Since $\lim_{x\to 0+} f(x) = 0$. Then when $a \leq 0$, f is lower semicontinuous on \mathbb{R}_+ . Then f is closed. Assume a > 0. Consider the sublevel set $\{x \in \mathbb{R}_+ : f(x) \leq 0\}$. Since $f(x) \leq 0$ for any $0 < x \leq 1$, f(0) > 0, and f(x) > 0 for any x > 1,

$$\{x \in \mathbb{R}_+ : f(x) \le 0\} = (0, 1]$$

Hence f is not closed if a > 0.